Markdown 基本语法
1. 排版
粗体 斜体
~~这是一段错误的文本。~~
引用:
引用 Leanote 官方的话, 为什么要做 Leanote, 原因是...
有充列表:
- 支持 Vim
- 支持 Emacs
无序列表:
- 项目 1
- 项目 2
2. 图片与链接
图片:
链接:
3. 标题
以下是各级标题, 最多支持 5 级标题
4. 代码
示例:
function get(key) {
return m[key];
}
代码高亮示例:
/**
* nth element in the fibonacci series.
* @param n >= 0
* @return the nth element, >= 0.
*/
function fib(n) {
var a = 1,
b = 1;
var tmp;
while (--n >= 0) {
tmp = a;
a += b;
b = tmp;
}
return a;
}
document.write(fib(10));
class Employee:
empCount = 0
def __init__(self, name, salary):
self.name = name
self.salary = salary
Employee.empCount += 1
5. Markdown 扩展
Markdown 扩展支持:
- 表格
- 定义型列表
- Html 标签
- 脚注
- todo list
- 目录
- 时序图与流程图
- MathJax 公式
5.1 表格
Item | Value |
---|---|
Computer | 1600 |
Phone | 12 |
Pipe | 1 |
可以指定对齐方式, 如 Item 列左对齐, Value 列右对齐, Qty 列居中对齐
Item | Value | Qty |
---|---|---|
Computer | 1600 | 5 |
Phone | 12 | 12 |
Pipe | 1 | 234 |
5.2 定义型列表
名词 1 : 定义 1(左侧有一个可见的冒号和四个不可见的空格)
代码块 2 : 这是代码块的定义(左侧有一个可见的冒号和四个不可见的空格)
代码块(左侧有八个不可见的空格)
5.3 Html 标签
支持在 Markdown 语法中嵌套 Html 标签,譬如,你可以用 Html 写一个纵跨两行的表格:
<table>
<tr>
<th rowspan="2">值班人员</th>
<th>星期一</th>
<th>星期二</th>
<th>星期三</th>
</tr>
<tr>
<td>李强</td>
<td>张明</td>
<td>王平</td>
</tr>
</table>
值班人员 | 星期一 | 星期二 | 星期三 |
---|---|---|---|
李强 | 张明 | 王平 |
提示, 如果想对图片的宽度和高度进行控制, 你也可以通过 img 标签, 如:
5.4 脚注
Leanote[^footnote]来创建一个脚注 [^footnote]: Leanote 是一款强大的开源云笔记产品.
5.5 todo list
Leanote 近期任务安排:
- [x] bbs 维护
- [ ] Desktop 发布新版
- [x] Markdown 编辑器添加 Todo list
- [x] 修复白屏问题
- [ ] 修复 issue3
- [ ] Leanote 维护
- [ ] 修复 issue4
5.6 目录
通过 [TOC]
在文档中插入目录, 如:
5.7 时序图与流程图
流程图:
st=>start: Start
e=>end
op=>operation: My Operation
cond=>condition: Yes or No?
st->op->cond
cond(yes)->e
cond(no)->op
提示: 更多关于时序图与流程图的语法请参考:
5.8 MathJax 公式
\$ 表示行内公式:
质能守恒方程可以用一个很简洁的方程式 $E=mc^2$ 来表达。
$$ $$
$$f(x_1,x_x,\ldots,x_n) = x_1^2 + x_2^2 + \cdots + x_n^2$$
$$\sum^{j-1}{k=0}{\widehat{\gamma}$$} z_k
更复杂的公式:
$$ \begin{eqnarray} \vec\nabla \times (\vec\nabla f) & = & 0 \cdots\cdots梯度场必是无旋场\ \vec\nabla \cdot(\vec\nabla \times \vec F) & = & 0\cdots\cdots旋度场必是无散场\ \vec\nabla \cdot (\vec\nabla f) & = & {\vec\nabla}^2f\ \vec\nabla \times(\vec\nabla \times \vec F) & = & \vec\nabla(\vec\nabla \cdot \vec F) - {\vec\nabla}^2 \vec F\ \end{eqnarray} $$